MFTP: the Minimalist File Transfer
Protocol

Version 1.00 - 17/Jan/2012

George W. Taylor

https:/lwww.TropicalCoder.com

Specification

1. Introduction

MFTP is a protocol for reliable data transport across the internet via the unreliable User
Datagram Protocol (UDP). Ideal for embedded or loT platforms with constrained resources
where TCP's overhead is undesirable or impractical. Sends full 512 byte blocks of data with no
overhead needed for ancillary information, enabled by acknowledgements with CRC32 of block

received compared by the CLIENT with CRC32 of block sent.

While UDP has a checksum for basic data integrity checking, the 16-bit checksum has limited
error-detecting capability. It can miss some types of errors, such as those that invert bits in a

way that results in the same checksum (e.g., two-bit errors that cancel each other out).

For applications that require strong data integrity guarantees, additional measures must be

taken at the application level to verify data integrity more robustly.

MFTP provides a stronger guarantee of data integrity by implementing additional CRC32

checks, which are used for the acknowledgments.



2. Data Types Involved

e FILE_SIZE: 32 bit unsigned value

e (CRC32: 32 bit unsigned value

e BLOCK_NUMBER: 32 bit unsigned value

e SHORT_MSG_SIZE: 8 bytes

e FILENAME: variable size, null terminated, 1 to 256 bytes

e HDR_MSG_SIZE: variable size - 5 to 512 bytes zero padded such that HDR_MSG_SIZE
= SHORT_MSG_SIZE

e DUP_WARN: OXxFFFFFFFF (optional - see below)

e WAIT_TIME: 2 seconds

e MAX_WAIT_TIMES: 10

e MAX_RESENDS: 10

e SOCKET_TIMEOUT: 20 seconds (adjust as required)

3. Messages

3.1 HDR_MSG

A FILE_STIZE followed by a FILENAME for a total of HDR_MSG_SIZE bytes.
(There is plenty of room here for other header information if desired.)

e Sent by the CLIENT who initiates the data transfer, the HDR_MSG must not be
SHORT_MSG_SIZE in total so there is no chance of the SERVER mistaking it for a
SHORT_MSG. This can be assured by simply appending a zero as necessary.

e The first packet received must be assumed to be the one and only HDR_MSG, except...

e Ifthe SERVER is on a multi-homed platform - ie: if it has more than one IP address,
since the first HDR_MSG sent is broadcast the SERVER may receive more than one copy.

If this arrives immediately after the first, it will be swallowed by the redundancy checking.



However, it may arrive much later. Therefore the SERVER must save the CRC32 from
the HDR_MSG and compare it against all blocks received to see if it is a repeat of that first
HDR_MSG, and if it is, it must be silently discarded. It is recommended that if a block

arrives with that same CRC32, then its first 32 bit value be compared with the FILESIZE

value to confirm that it is indeed a repeat before discarding it.

3.2 SHORT_MSG

A CRC32 followed by a BLOCK_NUMBER for a total of SHORT_MSG_SIZE bytes. There are three
types of SHORT _MSG:

e ACK_MSG: a CRC32 followed by a BLOCK_NUMBER
e REP_MSG: a CRC32 followed by a BLOCK_NUMBER
e DUP_MSG: a CRC32 followed by a DUP_WARN (optional)

The type of message received can only be identified by the number of bytes received. Any

message that is SHORT_MSG sized bytes must be one of these 3 types, but how do we know an

ACK_MSG from a REP_MSG from a DUP_MSG when received?

The CLIENT only ever receives an ACK_MSG, so any SHORT_MSG sized message must be that.
The SERVER can only receive either a REP_MSG or a DUP_MSG, and can distinguish between

them by looking at the BLOCK_NUMBER to see if it is a DUP_WARN.

3.3 DATA_MSG

1 to 512 bytes, excluding SHORT _MSG sized bytes

e Full 512 byte blocks of file data are sent until the last block of the file, which may be
anywhere from 1 to 512 bytes.

e Measures must be taken to ensure an 8 byte DATA_MSG cannot be mistaken for a

SHORT_MSG by using an extra zero pad byte.



3.4 REP_MSG

A signal to the SERVER that the data in the next block is the same as the last, and it is to simply
copy the previous buffer to file again. Then the CLIENT will expect an ACK with the same CRC32

as before, but the block number incremented from there.

3.5 DUP_WARN_MSG

A signal to the SERVER that the next block has the same CRC32 as the previous block but the

data is different.

A DUP_MSG followed by a DATA_MSG is sent separately and sequentially, with no pause
between them to wait for an ACK. The CLIENT will then expect an ACK for the DATA_MSG. If the

ACK does not arrive, both the DUP_MSG and the DATA_MSG must be resent.

Optional - see section 6. "Duplicate Blocks of Data and CRC Collisions" below.

3.6 EOF_MSG

0 bytes

4. File Transfer Process

To begin, the SERVER is listening for UDP packets on a port known to the CLIENT. The
CLIENT broadcasts a HDR_MSG every WALT_TIME seconds to the SERVER at the expected

port.

4.1 Receiving HDR_MSG

e The SERVER parses the HDR_MSG and prepares to create a file with the filename
passed.

e |t responds by sending an ACK_MSG to the CLIENT, with the CRC32 calculated from the

HDR_MSG received, and BLOCK_NUMBER field set to zero.



4.2 Sending Data

When the CLIENT receives the ACK_MSG, it verifies that it contains the CRC32 of the header it
sent and a BLOCK_NUMBER of 0. The CLIENT then proceeds to send a DATA_MSG with the first
512 byte block of file data. No header or ancillary data is sent with these blocks. The handshake
is thus established. The CLIENT always waits for an ACK_MSG from the SERVER before

sending each next message.

4.3 Block Numbering

e Blocks are numbered starting from 0. The CLIENT increments its internal current block
number variable with each block sent.

e The SERVER increments its internal current block number variable with each block
received.

e The SERVER writes each block to file in the sequence received. The SERVER always

sends an ACK_MSG after each message received, consisting of the CRC32 computed on

that block plus the block number the SERVER assigned it.

4.4 Handling ACK_MSG

When the CLIENT receives an ACK_MSG, it checks the CRC32 and block number in that

message. If they are the same values it has recorded for the last block sent, it proceeds to send
the next block. If these values correspond to the previous block sent, it assumes the latest block
(or message) was not received, and resends it. If these values correspond to neither the last

block nor the previous block, it displays an error and exits.

4.5 Resending ACK_MSG

If the SERVER does not hear from the CLIENT within a WALIT_TIME period, it resends its last
ACK_MSG. The SERVER will continue resending the ACK_MSG until the CLIENT responds, or it
has reached MAX_RESENDS.



4.6 Resending DATA_MSG

If the CLIENT does not receive an ACK_MSG within a WALT_TIME period, it resends its last block
or message. The CLIENT will continue resending until the SERVER responds, or it has reached

MAX_RESENDS. If either of these reach MAX_RESENDS it will display an error and exit.

5. Resending Strategy

Since the CLIENT includes no headers or ancillary data along with the buffers it sends,
processing the acknowledgement from the SERVER is key to ensure synchronization with the
SERVER as sending of the file progresses. The SERVER only ever sends one kind of message,

the ACK, which contains the CRC32 of the last block it received and also the block number the

SERVER assigned to that block.

Of course, the very first message received by the SERVER is not a block of file data, so 0 is
returned in the ACK as the block number. The first block of file data will be assigned a block

number of zero, and block numbers will increment from there.

Through analyses of the ACK the CLIENT learns how it is going with the SERVER. If the CRC32
and block number agree with the CLIENT's record of the last block it sent, the CLIENT can rest
assured that the SERVER has received that buffer and that all is well on that end. If the ACK
instead contains the CRC32 and block number for the previous block sent, the CLIENT knows

that the SERVER never got the latest block it sent and that it should send it again.

If the CRC32 or block number do not match up with either the values for the last block or the
block sent before that, the CLIENT understands that the SERVER is hopelessly confused and
terminates the session. There is nothing the CLIENT can do. Of course, a method could be
developed to attempt a recovery, but in reality this never happens in bug-free builds. One could

simply try sending the file again should the first attempt fail.

It is essential for the health of any connectionless network that unacknowledged packets be

generated at exponentially decreasing rates. Depending on the application (e.g., in potentially



high traffic networks), consider resending at exponentially decreasing rates, i.e., after 2
seconds, then again after 4 seconds, then again after 8 seconds, etc. The SOCKET_TIMEOUT

value should be reconsidered in this case.

6. Duplicate Blocks of Data and CRC Collisions

If the CLIENT encounters a block of data in the file stream that computes to the same CRC32 as

the previous block, it compares the data in that block with the data in the previous block...

1. If the data is identical (expected), it does not send that data again, but rather, sends a
REP_MSG to the SERVER with the CRC32 of that block and the next block number in the

sequence. (Example - sending a large executable file that may have two or more blocks
of zeros in sequence.)

2. If the data is not identical (unexpected), it sends a DUP_WARN_MSG, consisting of the
CRC32 of that block and the next block number in the sequence in a DUP_MSG, then
sending the block itself as a DATA_MSG. This would be an extremely rare occurrence.
There is a nearly infinitesimal probability that data would have two blocks with different
data, but the same CRC32 in sequence. However, handling for this is presented to

complete the logic of the protocol.

The SERVER employs alternating buffers to receive data such that the last block received is not

overwritten by the next block or message to arrive.

When the SERVER receives a REP_MSG it writes the previous DATA_MSG received to file (again)

and responds with an ACK_MSG as usual.

The SERVER employs redundancy checking on each DATA_MSG or REP_MSG that arrives to
verify if it already has that block with that CRC32. If it is redundant, it silently discards the block -

without reply.



When the SERVER receives a DUP_MSG, it disables its redundancy checking for the next block,
awaits the next block and processes it as normal when it arrives. However, before processing it
it checks the CRC32 of that block against the last and the previous. If that CRC32 is the same as

the last and the one before the last, it is silently discarded as an inadvertent duplicate. Finally, it

re-enables redundancy checking.

As the SERVER receives each DATA_MSG or REP_MSG, it verifies that redundancy checking has
not been inadvertently left disabled by the expectation set up by a DUP_MSG that was not
followed by a DATA_MSG.

7. End of Transfer

When the CLIENT completes sending all full 512 byte blocks of file data, the last remaining data
may be any number of bytes between 1 and 512. If by coincidence the number of bytes

happens to be SHORT_MSG_SIZE (8 bytes), it records the CRC32 for that block before zero
padding to SHORT_MSG_SIZE + 1 (9 bytes).

If the SERVER receives SHORT_MSG_SIZE + 1 bytes, it knows this must be the last block in the

file, and that it might include a 0 pad byte. It compares what the final file size will be with the last
byte against the file size it received in the beginning to know whether to drop the last byte. If it

drops the last byte, it must recalculate the CRC for the ACK excluding that last byte.

When the CLIENT completes sending all file data, it may display a success message to the user
and sends a sequence of (MAX_RESENDS + 1) EOF messages with a half-second pause

between each and terminates, without looking for a response from the SERVER.

When the SERVER receives an EOF, it may display a success message to the user, closes the

file, and terminates, sending no acknowledgment back to the CLIENT.



8. Security Considerations

MFTP does not address security considerations

9. Performance Enhancement

While the MFTP’s throughput may initially appear limited compared to conventional reliable data
protocols, leveraging multi-path transmission across multiple ports significantly enhances its
bandwidth capabilities. This approach requires a straightforward protocol for port negotiation,

ensuring efficient data distribution.

In practice, the protocol would allocate file segments to ports sequentially, with the lowest port

number handling the initial segment and the highest port number managing the final segment.

Once the port negotiation is complete, the MFTP can operate concurrently on each port without

modification, thus providing a reliable and scalable solution for data transfer over UDP.

10. Relevant RFCs for MFTP

To understand the relevant RFCs for a protocol like MFTP that aims to provide reliable data
transport over UDP, we can look into a few key documents that outline best practices and

methodologies for such implementations:

RFC 8085 - UDP Usage Guidelines

This document provides comprehensive guidelines for using UDP, emphasizing the necessity of
implementing mechanisms to handle varying path conditions, such as transmission delays and
congestion levels. It also covers congestion control and other essential features for reliable data

transport over UDP. Read more.


https://tools.ietf.org/html/rfc8085

RFC 8304 - Transport Features of UDP and UDP-Lite

This RFC details the features and primitives of UDP and UDP-Lite, including how these
protocols provide datagram services. It includes information on the APIs for sending and
receiving datagrams, as well as the importance of checksum protection for ensuring data

integrity. Read more.

Draft RFC on Reliable UDP (RUDP)

Although this is an expired draft, it discusses a reliable UDP protocol that builds on the
principles of RFC 1151 and RFC 908. It outlines mechanisms for reliable, in-order delivery of
packets and flexible design parameters suitable for various applications, including

telecommunications signaling. Read more.


https://tools.ietf.org/html/rfc8304
https://datatracker.ietf.org/doc/draft-ietf-sigtran-reliable-udp/

