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Abstract

This paper introduces a recursive framework for lexicographic permutations, revealing inherent
structural symmetries such as midpoint mirroring, prefix nesting, and factorial block decomposition.
This structure yields a global reflection symmetry, allowing mirrored permutations to be computed
with negligible additional cost. It also supports compressed codes that encode each permutation’s
offset from the lexicographic minimum. We present a recursive algorithm for permutation generation
that exposes this internal structure, along with a variant for direct compressed code production. We
compare with classical methods and include implementations in Python and C++.

1. Introduction

While lexicographic order is well understood, its internal architecture—particularly the symmetries re-
vealed in delta sequences—has not been widely explored compositionally. This paper uncovers a com-
pact recursive pattern embedded within permutation space, reframing lexicographic order as self-similar
through the lens of delta structure. It introduces a mirrored embedding and recursive organization of delta
sequences across factorial boundaries.

These insights enable efficient representation, indexing, and traversal, including reflection-based com-
putation of permutation pairs at negligible additional cost. Collectively, they support reinterpretation
of known results from a structural perspective, offering new opportunities for analysis and application.
Building on these insights, we define a compact numerical representation—the compressed code—which
arithmetically encodes each permutation’s offset from the lexicographic minimum. These codes support
direct reconstruction and extend naturally to other numeral systems.

Classical permutation algorithms such as Heap’s and Johnson-Trotter emphasize efficiency and minimal-
change transitions. These state-driven procedures treat permutation space atomistically, lacking a global
structural interpretation. While Lehmer unranking reveals the factorial organization of permutations
procedurally, it does not emphasize the recursive symmetries and alignments explored here. Although
recursive generation algorithms for lexicographic order exist in textbooks, their extension towards struc-
tural compression remains largely unexplored. Similarly, the factorial number system provides positional
indexing but lacks the recursive compression and symmetry exploitation emphasized here.

In 2011, the author (Taylor) proposed a model of permutation space in ”A Permutation on Combinatorial
Algorithms”, and experimented with structurally aware generation. This work described recursive sym-
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metries across digit lengths and suggested encoding permutations by their offset from the lexicographic
minimum. It concluded with a conjecture questioning whether such codes could be generated directly,
without enumeration of the permutations themselves.

Building on those foundations, we formalize and expand upon the structural properties originally observed,
adding a recursive tree whose branching patterns reflect prefix grouping and digit relabeling (see Ap-
pendix G). We present a recursive algorithm whose structure directly embeds this tree and a variation that
outputs compressed codes, providing implementations that emphasize conceptual clarity. In this paper, we
treat permutations as beginning with 0 and express them as undelimited digit sequences (base-10 assumed).

2. Recursive Symmetries in Delta Space

The symmetry of the permutation space is not evident in the sequence of values, but rather in the differ-
ences between them—the deltas. This derivative reveals a hidden order not apparent in the raw permuta-
tion values.

Let each permutation be interpreted as a base-10 integer. We define the delta as the numeric difference
between successive permutations P in lexicographic order:

∆i = Pi+1 − Pi

Delta Table for Lexicographic Permutations of 4 Digits:

Index Delta Expression
0: 0132− 0123 = 9
1: 0213− 0132 = 81
2: 0231− 0213 = 18
3: 0312− 0231 = 81
4: 0321− 0312 = 9

5: 1023− 0321 = 702
6: 1032− 1023 = 9
7: 1203− 1032 = 171
8: 1230− 1203 = 27
9: 1302− 1230 = 72
10: 1320− 1302 = 18
11: 2013− 1320 = 693 <-- centre of symmetry (pivot)
12: 2031− 2013 = 18
13: 2103− 2031 = 72
14: 2130− 2103 = 27
15: 2301− 2130 = 171
16: 2310− 2301 = 9
17: 3012− 2310 = 702

18: 3021− 3012 = 9
19: 3102− 3021 = 81
20: 3120− 3102 = 18
21: 3201− 3120 = 81
22: 3210− 3201 = 9

The delta list for the complete 4-digit permutation space reveals three distinct segments:

• The first five deltas reproduce the delta sequence of the 3-digit permutations.

• The central 13 deltas are unique to the 4-digit set and centre around the pivot permutation.

• The final five deltas mirror the first five—forming a perfect reflection.
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Given the pivot at delta index n!−2
2 (0-based, as in the delta table), the deltas satisfy the following identity:

∆pivot+d = ∆pivot−d

for all valid integer offsets d. This relation expresses exact equality and confirms the palindromic symmetry
of the delta sequence. It arises directly from the recursive embedding and central reflection. Its implications
for the permutations themselves will be explored in the sections that follows.

These observations reveal two intertwined symmetries in what we call delta space:

• Recursive (structural) symmetry: The delta sequences at level n are built by embedding palindromic
copies of level n− 1, creating self-similar recursive layers.

• Arithmetic (delta-based) symmetry: The delta table shows arithmetic reflection around a central
pivot, from which the formula above emerges.

3. Why Delta Sequences Recursively Embed Lower-Order Structures

The appearance of ∆k patterns within ∆n arises naturally from how lexicographic permutations are
constructed. As we build the list, we begin by permuting just the final two digits, then expand to include
the last three, then four, and so on—progressively increasing the digit count of the active suffix up to n−1.

In each of these regions, the digits to the left of the permuted block remain fixed. When computing the
delta between successive permutations, these fixed digits cancel out, leaving only the contribution of the
changing suffix. As a result, each local delta pattern reflects the same differences we would observe in a
smaller permutation set: ∆2, ∆3, ∆4, and so on, until finally all digits are in motion.

In the second half of the list, the process unwinds: as each leading digit settles into place, the active suffix
shrinks by one digit at a time. The deltas mirror the same patterns—first those of ∆n−1, then smaller ∆k

sequences—ultimately converging back toward∆2.

This gradual buildup and teardown of the active suffix defines the structure of the prefix and suffix regions
of∆n. Though not directly visible in the lexicographic ordering itself, this progression governs the shape
of the delta sequence, which inherits this symmetry as a natural palindromic reflection.

4. Recursive Construction of Delta Layers

To illustrate the recursive structure more explicitly, we now introduce notation that will help express it.

Let ∆n denote the delta sequence of length n!− 1 associated with the full permutation set Sn.

We define the central spline Cn as the core of ∆n, bridging two mirrored copies of ∆n−1 across the
midpoint, arising from transitions between major prefix changes in the lexicographic generation process.
It is palindromic in its own right.

We express this symbolically:

• ∆2: Base sequence [9] for {0, 1}.

• C3, C4, . . . : Central splines (e.g., C3 = [81, 18, 81]).
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This recursive embedding can be seen explicitly in the symbolic expansion of ∆n for

n = 4:
[∆2, C3,∆2, C4,∆2, C3,∆2]

n = 5:
[∆2, C3,∆2, C4,∆2, C3,∆2, C5,∆2, C3,∆2, C4,∆2, C3,∆2]

This embedding process may be formalized as:

∆n = ∆n−1 ∥Cn ∥∆n−1

Each layer recursively embeds lower-order segments and central splines in a palindromic pattern, matching
the structure observed in the full delta table. Although we do not formalize the spline values here, this
layered recurrence captures the recursive and palindromic structure observed in the delta table.

Having traced the recursive structure of delta space, we now turn our attention to permutation space.

5. Arithmetic Reflection in Permutation Space

As shown in Section 2, delta space exhibits mirror symmetry centered on a pivot permutation. A corre-
sponding symmetry exists in permutation space, where the lexicographically ordered sequence reflects
about a numerical midpoint. This midpoint is defined as:

midpoint = Pmax + Pmin
2

where Pmin and Pmax are the integer values of the first and last permutations. While this midpoint defines
the axis of symmetry, the reflected permutation is more efficiently computed without it, using:

Preflected = Pmax − (Pi − Pmin)

Example: With n = 4, there are 4! = 24 permutations, ranging from Pmin = 0123 = 123 to Pmax = 3210.
Given the permutation Pi = 2301, its reflected counterpart is computed by subtracting the offset from the
maximum:

Preflected = Pmax − (Pi − Pmin) = 3210− (2301− 123) = 1032

The reflection allows a second permutation to be obtained at negligible additional cost, enabling efficient
traversal of the permutation space. This formula is algorithm-independent, requiring only the numeric
permutation value and the known bounds of the permutation space. (Lexicographic order can be recovered
via buffering if desired.)

For algorithms that track permutation indices, an analogous reflection applies: The 0-based reflected index
is given by:

ireflected = (n!− 1)− i

Example: If the permutation Pi = 2301 occurs at index i = 16, and indices range from 0 through 23, then:
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ireflected = 23− 16 = 7

Permutation 1032 lies at index 7, flipping the index around the midpoint. While index reflection follows
from a general arithmetic symmetry over consecutive integers, permutation reflection leverages the inher-
ent structural symmetry of permutation space.

6. Structural Embedding in Permutation Space

The recursive embedding described in Section 2 for delta sequences appears to manifest within the permu-
tations themselves, though obscured by lexicographic ordering. In particular, the first and last (n − 1)!
permutations of Sn seem to echo the structure of Sn−1.

• In the last (n−1)! permutations of Sn, remove the first digit from each. The remaining subsequences
form the complete set of permutations for Sn−1.

• In the first (n − 1)! permutations of Sn, remove the first digit and subtract 1 from each of the
remaining digits. This again yields the complete set of permutations for Sn−1.

For example, let us look at the first and last permutations for set n = 4:

Last (n− 1)! permutations First (n− 1)! permutations
First digit removed → S3 First digit removed, subtract 1 → S3

3 0 1 2 0 1 2 0 1 2 3 0 1 2
3 0 2 1 0 2 1 0 1 3 2 0 2 1
3 1 0 2 1 0 2 0 2 1 3 1 0 2
3 1 2 0 1 2 0 0 2 3 1 1 2 0
3 2 0 1 2 0 1 0 3 1 2 2 0 1
3 2 1 0 2 1 0 0 3 2 1 2 1 0

Table 1: Recursive embedding visible directly in the permutations for n = 4.

Just as the first and last (n− 1)! permutations of Sn embed the structure of Sn−1, this relationship can be
extended to construct extremal regions of Sn given the full set Sn−1. Specifically:

• To generate the first (n−1)! permutations of Sn, increment every digit of each permutation in Sn−1

by 1, then prepend 0.

• To generate the last (n− 1)! permutations of Sn, prepend the maximum digit n− 1 to each permu-
tation in Sn−1 without modifying the digits.

What initially appeared as structural reflection turns out to follow a consistent numerical rule across the
entire permutation list, leading naturally to a different kind of recursion—one rooted in a systematic
partitioning of permutation space by leading digit. This marks the shift from structural reflection to
combinatorial encoding, forming the basis for ranking, unranking, and the Lehmer code itself.
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7. Factorial Partitioning of Permutation Space

Any list of n! permutations can be partitioned into n consecutive groups of (n − 1)!, reflecting a funda-
mental property of factorials: n! is evenly divisible by (n− 1)!.

Example (n = 4 ). The lexicographic list has 4! = 24 permutations that can be partitioned into four
groups of 3! = 6 each.

24 permutations = 6 + 6 + 6 + 6︸ ︷︷ ︸
groups of 6

This block structure reveals a different kind of order—not from mirrored patterns in delta space, but
from the arithmetic of permutation indexing itself. Indeed, the permutations of {0, 1, . . . , n − 2} can
be recovered from every group, a known property fundamental to Lehmer codes. (See Appendix F for
empirical observations related to this structural regularity.)

There is one uniform rule that specializes to the first and last cases discussed above in Section 6. Each
group is determined by a fixed leading digit k ∈ {0, 1, . . . , n− 1} (assuming lexicographic order).

Uniform rule for any group

(a) Remove the leading digit k.

(b) In the resulting (n− 1)-digit string, subtract 1 from every digit that is strictly greater than k.

This mapping sends the digits in {0, 1, . . . , n−1}\{k} onto {0, 1, . . . , n−2} in an order-preserving way,
thereby producing each permutation of Sn−1.

Special cases:

• For the first group (k = 0): Every remaining digit exceeds 0, so subtract 1 from all, recovering Sn−1.

• For the last group (k = n − 1): No remaining digits exceed k, so no changes occur after removal,
again recovering Sn−1.

Conversely, we can construct each group from Sn−1:

• For leading digit k: Take each permutation in Sn−1, add 1 to every digit that is ≥ k, and prepend k.

Applying this to each k reconstructs the full set Sn.

Up to this point, we have only used the uniform rule to reveal Sn−1 inside Sn. But the same rule applies
again inside Sn−1, revealing Sn−2; and inside that, Sn−3, and so on. This cascading structure means that
any permutation of Sn can be dissected step by step to smaller sets until nothing remains. In the next
section, we follow this chain of reductions for a single permutation—a process we call decomposition.

6



8. Decomposition and Reconstruction of a Permutation

To see how this process unfolds in practice, we apply the uniform rule to recursively decompose a permu-
tation, step by step.

Consider the permutation 2310 (for n = 4).

• 2310: Leading digit k = 2; remove it→ 310; subtract 1 from any digit greater than 2 → 210.

• 210: Leading digit k = 2; remove it → 10; no digits greater than 2, so unchanged.

• 10: Leading digit k = 1; remove it→ 0; no digits greater than 1, so unchanged.

• 0: Base case.

This sequence of reductions corresponds to moving down a factorial tree of permutation space, where each
level branches into n subtrees, each isomorphic to the tree for Sn−1 (see Appendix G for an illustration).

The sequence of removed digits is 2, 2, 1, followed by the final 0. These values record the choices made
at each level: with m digits remaining, the number gives the index of the selected digit from the sorted
remaining list {0, 1, . . . ,m− 1}, wherem decreases from 4 to 1.

Reconstruction reverses the process: start from an empty sequence and insert digits in order 0, 1, 2, 3,
placing each according to the reversed choice sequence [2, 2, 1, 0]:

• Start with an empty sequence; insert 0 at position 0→ 0.

• Insert 1 at position 1 → 10.

• Insert 2 at position 2 → 210.

• Insert 3 at position 2 → 2310.

This choice sequence [2, 2, 1, 0] is precisely the Lehmer code of 2310, appearing here as a byproduct of
decomposition, without reference to ranking. It encodes the path through the factorial tree: at each level
withm remaining digits, select the digit at index cm−1 (0-based), prepend it, and recurse.

9. Indexing

The permutation list subdivides recursively—first into n groups of (n− 1)!, then each of those into (n− 1)
groups of (n−2)!, and so on. Consequently an index alone encodes a complete path through this hierarchy.

The factorial tree structure allows us to map between a permutation’s lexicographic index (0-based) and
its Lehmer code directly. Each Lehmer code digit represents a left-to-right index at that level of the tree,
guiding traversal down the factorial hierarchy. Given index i for n = 4 (0 to 23), the tree divides into 4
groups of 3! = 6. The top-level digit is k = ⌊17/6⌋ = 2.

Example: Let i = 17 for n = 4. This index implicitly selects the third digit from {0, 1, 2, 3} at the top level.
Recurse with the remainder i mod 6 = 5 on the reduced set.

• 17÷ 6 = 2 (remainder 5); select 2 (third in {0, 1, 2, 3}); remaining {0, 1, 3}.
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• 5÷ 2 = 2 (remainder 1); select 3 (third in {0, 1, 3}); remaining {0, 1}.

• 1÷ 1 = 1 (remainder 0); select 1 (second in {0, 1}); remaining {0}.

• Select 0.

Yields 2310, with Lehmer code [2, 2, 1, 0].

Thus the global lexicographic index can be decomposed using successive modulus operations mod(n −
1)!, mod(n− 2)!, . . .. This is the factorial number system decomposition:

17 = 2 · 3! + 2 · 2! + 1 · 1! + 0 · 0!.

The coefficients form the Lehmer code, providing a bijection between indices and permutations.

This recursive extraction yields a sequence of positional choices, allowing recovery of the permutation
at any given index i directly. In the next section, we convert this factorial tree structure into an explicit
recursive algorithm.

10. From Structural Insight to a Recursive Permutation Algorithm

The recursive structure we’ve uncovered—grouping, digit removal, and relabeling—yields a generation
procedure. We present it first in mathematical terms, then as code.

Mathematical Formulation

Let A = (a0, a1, . . . , an−1) be a sorted sequence of n distinct elements. Let Π(A) denote the sequence of
all permutations of A in lexicographic order. Define Π(A) recursively:

Π(A) =

{
{A} if |A| = 1,⋃n−1

i=0 (ai ·Π(A \ {ai})) otherwise,
(where unions preserve lexicographic order by increasing i, ensuring lexicographic order), A \ {ai} is A
with ai removed (maintaining element order), and ai · L prepends ai to each permutation in L.

This mirrors the tree: branch on each possible leading digit, recurse on the remainder.

Example for A = (0, 1, 2):

Π((0, 1, 2)) = 0 ·Π((1, 2)) ∪ 1 ·Π((0, 2)) ∪ 2 ·Π((0, 1)),

unfolding to the six permutations as before.

The recursion tree has
∑n

k=0 n!/k! nodes, where each node represents a prefix of length k and the count
reflects all partial and complete permutations generated during recursion.

Algorithmic Implementation

The following C++ code implements this recursion using a prefix buffer. It emits permutations at leaves
and directly mirrors the structural decomposition. (Assume MAX_N defined, a global int n for the number
of digits and a user-defined function emit to display each permutation.) Every line in the code corresponds
directly to a step already encountered in our structural walkthrough.
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void generate_permutations(const int* sorted_digits, int len,
int* prefix, int depth, void (*emit)(int*, int)) {
if (len == 1) {

prefix[depth] = sorted_digits[0]; // base case: single digit left
emit(prefix, n); // output one complete permutation
return;

}
for (int i = 0; i < len; ++i) { // iterate over groups of (len-1)!

int first = sorted_digits[i]; // (a) select leading digit k
prefix[depth] = first; // record k in the output buffer

int remaining[MAX_N]; // (b) remove k and build remaining[]
int idx = 0;
for (int j = 0; j < len; ++j)

if (j != i) remaining[idx++] = sorted_digits[j];
// (c) recurse on the (n-1)-set
generate_permutations(remaining,len - 1, prefix, depth + 1, emit);

}
}

This avoids swaps or backtracking by explicitly constructing reduced digit sets, preserving the structural
clarity. Modifying the loop to select based on an index yields unranking (Section 9).

Comparison with Classical Methods

Classical recursive permutation generators (e.g., Sedgewick 1977) also fix prefixes and recurse, but typically
use in-place swaps for efficiency. Our approach emphasizes structural recursion, aligning the code with
the factorial tree and embedding properties. While less efficient than in-place methods, it provides clearer
insight into permutation space organization, making it ideal for educational purposes.

11. The Compressed Codes

Compressed codes offer a compact representation of permutations, conceptually similar to factorial-based
ranking schemes such as Lehmer codes and base conversions in combinatorial number systems. Each
permutation can be compactly encoded by subtracting the numeric value of the lexicographically minimal
permutation and dividing the result by r−1 (9 in base-10). These compressed codes preserve lexicographic
order and allow exact reconstruction of the original permutations. (A full table of compressed codes for
n = 4 is provided in Table 13.)

Definition

For any permutation p of n distinct digits written as an n-digit integer in radix r, we define its compressed
code c as:

c =
p− bmin
r − 1

where c is always an integer, bmin is the numeric value of the lexicographically minimal permutation of
the digit set, and r is the numeral base (usually 10).
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The formula is invertible:

p = (r − 1)c+ bmin

Since permutations are rearrangements of a fixed digit set, all share an identical digit sum S. Thus, by
properties of positional number systems:

p mod (r − 1) = S mod (r − 1)

This guarantees that p− bmin is divisible by r− 1, making c always integral and fully invertible as shown.

Example:

Let p = 1230 and the digit set be {0, 1, 2, 3}. Then bmin = 0123, numerically interpreted as 123, and the
compressed code is:

c =
1230− 123

9
=

1107

9
= 123

To reconstruct the original permutation from the compressed code:

p = 9× 123 + 123 = 1107 + 123 = 1230

Ensure leading zeros are preserved during reconstruction to maintain fixed-width n-digit formatting.

Key PropertiesThis compression scheme has several useful features:

• Guaranteed divisibility: The constant digit sum ensures divisibility of all permutation differences
by r − 1.

• Lossless representation: Themapping between permutations and compressed codes is bijective and
fully reversible.

• Structural inheritance: The list of compressed codes for n begins with the complete list for n − 1,
preserving the recursive embedding of permutation structure across digit lengths.

• Scalable boundary reconstruction: The initial and final k! permutations of a larger set Sn can be
reconstructed directly from the compressed codes of Sk, interpreted in the permutation base of Sn,
enabling efficient access to extremal regions.

Properties

From a practical standpoint, compressed codes scale well:

• Permutation values for n = 10 exceed 32-bit integer capacity, but the corresponding compressed
codes remain within 32 bits.

• Even for n = 19, compressed codes fit within a 64-bit integer, whereas full permutation values do
not.

Moreover, these codes establish a coordinate system that reflects the recursive organization of delta space.
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12. Direct Compressed Code Generation

A variant of our prefix-based algorithm generates compressed codes without permutations, accumulating
offsets using the same structural logic.

The key idea is to compute, at each recursive step, the numeric offset introduced by selecting a particular
digit in the current position. Instead of assembling digits, this offset is computed and accumulate with the
offsets from deeper recursive calls. (Assumes a global function pow10 that returns 10k for a given k.)

void generateCompressed(const int* digits, int len, int64_t* buffer, int& outIdx)
{

if (len == 1) {
buffer[outIdx++] = 0;
return;

}
int sorted[MAX_N];
memcpy(sorted, digits, len * sizeof(int));
std::sort(sorted, sorted + len);

int64_t base = 0;
for (int i = 0; i < len; ++i)

base = base * 10 + sorted[i];

for (int i = 0; i < len; ++i) {
int first = sorted[i];

int remaining[MAX_N], idx = 0;
for (int j = 0; j < len; ++j)

if (j != i) remaining[idx++] = sorted[j];

int64_t remainBase = 0;
for (int j = 0; j < len - 1; ++j)

remainBase = remainBase * 10 + remaining[j];

// Offset: positional contribution of the leading digit and remaining tail
int64_t offset = (int64_t(first) * pow10(len - 1) + remainBase - base) / 9;

int start = outIdx;
generateCompressed(remaining, len - 1, buffer, outIdx);
for (int j = start; j < outIdx; ++j)

buffer[j] += offset;
}

}

Here, digitsToInt converts a list of digits to an integer, and pow10(len - 1) returns 10len−1. The
division by 9 normalizes the positional contribution based on the change in base value from the sorted
reference. As with the permutation generator, this algorithm makes (n − 1)! recursive calls per digit in
the top-level list, traversing the same recursive tree but collecting offsets instead of digit sequences.
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Each resulting integer in the output array is a compact representation of a permutation. (Note: For
practical application, use tail recursion to avoid stack overflow. Additionally, preallocate working buffers
to minimize memory churn, and consider avoiding per-call list copies by reusing or marking entries where
feasible.)

Mathematical Formulation

We now present a formal description of the compressed code generator, assuming base-10 throughout.

Notation and Setup

Let D = [d0, d1, . . . , dn−1] be a list of n distinct digits from the set {0, 1, . . . , n− 1}. Define:

• int(D): the integer value of the digit list when interpreted as such, i.e.,

int([d0, d1, . . . , dn−1]) =
n−1∑
k=0

dk · 10n−1−k

• base = int(sorted(D)): the lexicographically minimal permutation of D, interpreted as an integer.

Let remove(D, d) denote the list obtained by removing the first occurrence of digit d from D, preserving
the order of the remaining digits.

The compressed code functionK(D) returns a list of nonnegative integers, one for each permutation ofD
in lexicographic order, defined recursively as follows:

K(D) =


[0] if |D| = 1,

|D|−1⋃
i=0

{offset(di, D) + k | k ∈ K(remove(D, di))} otherwise,

where:

offset(di, D) =
di · 10n−1 + int(remove(D, di))− base

9

Each offset is added elementwise to the recursive result. The division by 9 yields exact integers due to the
digit sum invariance of permutations, as explained in Section 11.

Example

Let D = [0, 1, 2], so r = 10 and base = int([0, 1, 2]) = 12.

offset(0, [0, 1, 2]) = 0 · 100 + int([1, 2])− 12

9
=

12− 12

9
= 0

offset(1, [0, 1, 2]) = 1 · 100 + int([0, 2])− 12

9
=

100 + 2− 12

9
= 10

offset(2, [0, 1, 2]) = 2 · 100 + int([0, 1])− 12

9
=

200 + 1− 12

9
= 21

Continuing recursively: K([0, 1, 2]) = [0, 1, 10, 12, 21, 22]
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13. Comparing Compressed Codes and Lexicographic Ranks

Table 2: Permutations of n = 4 with Lehmer and Compressed Codes
Index Permutation Lehmer Code Base-10 Value Compressed Code

0 0123 [0, 0, 0, 0] 123 0
1 0132 [0, 0, 1, 0] 132 1
2 0213 [0, 1, 0, 0] 213 10
3 0231 [0, 1, 1, 0] 231 12
4 0312 [0, 2, 0, 0] 312 21
5 0321 [0, 2, 1, 0] 321 22
6 1023 [1, 0, 0, 0] 1023 100
7 1032 [1, 0, 1, 0] 1032 101
8 1203 [1, 1, 0, 0] 1203 120
9 1230 [1, 1, 1, 0] 1230 123
10 1302 [1, 2, 0, 0] 1302 131
11 1320 [1, 2, 1, 0] 1320 133
12 2013 [2, 0, 0, 0] 2013 210
13 2031 [2, 0, 1, 0] 2031 212
14 2103 [2, 1, 0, 0] 2103 220
15 2130 [2, 1, 1, 0] 2130 223
16 2301 [2, 2, 0, 0] 2301 242
17 2310 [2, 2, 1, 0] 2310 243
18 3012 [3, 0, 0, 0] 3012 321
19 3021 [3, 0, 1, 0] 3021 322
20 3102 [3, 1, 0, 0] 3102 331
21 3120 [3, 1, 1, 0] 3120 333
22 3201 [3, 2, 0, 0] 3201 342
23 3210 [3, 2, 1, 0] 3210 343

Compressed codes and lexicographic ranks provide unique indices but from different principles: position
vs. structure. They coexist in permutation space.

Classical rank and unrank methods treat permutations as positions within the lexicographic order, map-
ping each permutation to a unique lexicographic index via factorial decomposition (e.g., Lehmer code).
This approach offers an exact, reversible mapping between permutations and their integer ranks, and is
well suited for direct indexing, sampling, enumeration, and combinatorial testing.

Compressed codes, by contrast, encode each permutation’s absolute offset from the lexicographic mini-
mum, using the simple arithmetic formula introduced earlier. Unlike rank, this representation is struc-
turally grounded and works uniformly across numeral systems, varying digit ranges, and digit set offsets
(e.g., non-zero-starting sets).

Taken together, these representations offer complementary strengths: lexicographic rank provides precise
positional access, while compressed codes support recursive composability and structural insight. Rank
and unrank remain unmatched in their utility. Compressed codes are useful for theoretical exploration
and, as we will see in the next section, can mark structural transitions.
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14. Structural Insights and Logarithmic Behavior of Compressed Codes

Building on the foundational properties of compressed codes, inspection reveals patterns that align with
permutation space. Just as we divided the permutations of Sn into n groups of (n − 1)! permutations
each in Factorial Partitioning of Permutation Space ( 7), they can just as naturally be grouped by successive
factorial blocks. As we now show, these codes in base-10 align precisely with the start of these blocks.

Factorial Boundary Alignments and Anchor Points

Inspection reveals that base-10 codes of the form 10k (for k = 0, 1, 2, . . .) consistently mark the starting
positions of factorial-sized blocks within the compressed code list when enumerating permutations of Sn.
For example, in Sn for n ≥ 6, the codes 1, 10, 100, 1000, and 10000 align with the first permutations of
the 2!, 3!, 4!, 5!, and 6! blocks respectively.

More significantly, for k ≥ 4, these anchor codes mark structural transitions, and decode to permutations
whose leading digit shifts to 1—signaling a change in the recursive embedding of permutation space. This
pattern appears stable across values of n and may continue indefinitely. (Requires further verification).

This phenomenon further reinforces the recursive logic underlying compressed codes and aligns with the
trailing-digit regularities discussed in Observed Structural Regularities at Factorial Boundaries (Appendix F).
It reflects the hierarchical decomposition of permutation space and highlights how compressed codes
embed a coarse-grained structural map within their digit patterns. Viewed this way, the codes function as
both identifiers and signposts within a stratified geometric landscape.

Logarithmic Scaling Analogy: Compressed codes scale additively in length, evoking how logarithms
compress exponential growth. Although digit count grows as O(logr(n!)) ∼ O(n logn/ log r), it remains
compact relative to the factorial growth of permutation space.

Example: For n = 4 (24 permutations), codes range from 0 to 343 (up to 3 digits); for n = 5 (120
permutations), up to 4 digits suffice—capturing the 5× 4! growth with minimal increase in code length.

Implications and Applications: Changes in codes’ digit count provide predictable waypoints in the re-
cursive structure of permutation space, enabling prefix-based navigation, structural analysis, and efficient
storage. This supports natural bucketing of permutations and facilitates recursive algorithms that span
multiple sizes. For instance, codes from Sn extend into Sn+1 when decoded using the base of Sn+1,
maintaining structural continuity across layers.

This perspective supports exploratory tools such as similarity metrics, probabilistic sampling, and gener-
alizations to multisets. Collectively, these capabilities underscore the role of compressed codes in enumer-
ation and structural analysis.

15. Recursive Symmetries in Compressed Code Delta Space

Building on the symmetries in permutation delta space (Section 2), we extend the analysis to deltas between
compressed codes. Define the compressed delta as the numeric difference between successive compressed
codes C in lexicographic order:

∆c
i = Ci+1 − Ci,

yielding a list of length n! − 1. These deltas exhibit the same recursive and mirror symmetries as permu-
tation deltas, but scaled by a factor of 1/(r − 1) (where r is the base, typically 10).

14



Delta Table for Compressed Codes of 4-Digit Permutations:

Index Delta Expression
0: 1− 0 = 1
1: 10− 1 = 9
2: 12− 10 = 2
3: 21− 12 = 9
4: 22− 21 = 1

5: 100− 22 = 78
6: 101− 100 = 1
7: 120− 101 = 19
8: 123− 120 = 3
9: 131− 123 = 8
10: 133− 131 = 2
11: 210− 133 = 77 <-- centre of symmetry (pivot)
12: 212− 210 = 2
13: 220− 212 = 8
14: 223− 220 = 3
15: 242− 223 = 19
16: 243− 242 = 1
17: 321− 243 = 78

18: 322− 321 = 1
19: 331− 322 = 9
20: 333− 331 = 2
21: 342− 333 = 9
22: 343− 342 = 1

The sequence partitions naturally: the first five match the deltas for n = 3, the central 13 are unique
(centered on index 11), and the final five mirror the first. As it turns out, compressed code deltas are
the permutation deltas from Table 2 scaled by 1

9 , providing an alternative path to code generation via
accumulation of the reduced deltas.

We observe the same two intertwined symmetries in compressed code delta space that we saw in permu-
tation delta space, the structural recursion and arithmetic reflection around a central pivot.

The mirror symmetry satisfies:
∆c

pivot+d = ∆c
pivot−d

for valid d, with the pivot at index n!−2
2 .

Recursive construction mirrors that of ∆p
n as discussed in Section 4.

∆c
n = ∆c

n−1 ∥Cc
n ∥∆c

n−1,

where Cc
n is the scaled central spline (e.g., Cc

4 = [78, 1, 19, 3, 8, 2, 77, 2, 8, 3, 19, 1, 78] for n = 4).

Implications

Reflection in code space simplifies to:
Cref = Cmax − C,

where Cmax is the compressed code for the last permutation in the set, enabling negligible-cost pairing.

These deltas support direct generation algorithms, delta-encoded compression, and sampling at factorial
boundaries. They also suggest combinatorial links, such as interpreting small deltas as minimal changes
in a reduced factorial system.
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16. Positioning Within the Broader Combinatorics Landscape

We position our framework within the broader field of combinatorics. Classical approaches often treat
permutations as flat, linear structures; our approach reveals them as recursively nested. This aligns with
Gray codes and finite differences, but our delta symmetry encodes deeper, more intricate patterns.

This compares to with algebraic families like generating trees, Catalan structures, and Young tableaux,
which also exhibit self-similar growth. Our framework is arithmetic but suggests connections.

17. Conclusion and Future Work

This work began as a search for a compressed code algorithm, as conjectured in Taylor (2011), and cul-
minated in its discovery. More significantly, it revealed a structurally grounded method for permutation
generation—distinct from classical approaches—arising from the compositional geometry of lexicographic
order.

We also formalized the recursive and symmetric structure of permutation delta space, including midpoint
mirroring, prefix nesting, and factorial block decomposition. This framework enables mirrored permuta-
tions to be computed with negligible cost, effectively doubling output without additional computation.

Compressed codes naturally emerge within this structure as compact, reversible representations. They
reflect the recursive logic of permutation growth and offer an efficient coordinate system aligned with
permutation space.

The core contribution is conceptual: a shift from procedural generation to structural insight. The gener-
ation algorithm is a consequence of this perspective, rather than its primary objective. Together, these
ideas suggest several paths for further exploration:

• Generalization Beyond Base-10 Digits: Extend the method to arbitrary alphabets by adapting
the factorial boundaries, delta rules, and encoding scheme—enabling compression of non-numeric
permutations.

• Direct Random Access: Investigate whether the recursion underlying compressed codes can im-
prove ranking/unranking or enable more direct access to targeted segments of permutation space.

• Cryptographic Applications: Explore the use of recursively compressed permutation spaces in
cryptographic functions, particularly for pseudorandom generation and keyspace structuring.

• Compressed Storage and Indexing: Combine compressed codes with other combinatorial represen-
tations to enable efficient storage, retrieval, and filtering of large permutation sets.

• Sampling and Navigation: Develop probabilistic and indexed traversal methods within compressed
code space, supporting partial decoding or local permutation access.

• Factorial Digit Regularities: Analyze the factorial-aligned digit regularities observed during em-
pirical exploration, and determine whether deeper arithmetic structure governs global behavior in
permutation space.

These avenues underscore the value of structural recognition in permutation space. While recursion and
mirroring are latent in lexicographic order, their implications for compression, indexing, and symbolic
manipulation remain largely untapped. This framework bridges combinatorial theory and algorithmic
design, offering a foundation for continued structural exploration.
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Appendix A: Python Permutation Generator

This Python code implements the prefix-based permutation generator. It directly emits lexicographic
permutations and can serve as a reference for experimentation or adaptation. (Code listing 1. follows
below. A digital copy is also available at:
https://tropicalcoder.com/PermutationGenerator.py)

Appendix B: Basic Python Compressor and Reconstructor

Minimal Python code for compressed code generation and permutation reconstruction. Compressed code
generation typically operates as a buffered recursive process. (Code listing 2. follows below, but a digital
version is available at:
https://tropicalcoder.com/CompressedCodeGenerator.py) PermutationGenerator.py

Appendix C: C++ Permutation Generators with Index Column

The following C++ programs generate full three-column permutation tables. Each outputs: the permuta-
tion index, the generated permutation (via direct construction), and a validation permutation generated
using std::next_permutation, allowing complete verification of algorithm correctness.

This version generates the full sequence of lexicographic permutations from index zero upward. A digital
copy is available at:
https://tropicalcoder.com/PermutationGenerator.cpp

This variation accepts an initial index and generates permutations starting from that point. This enables
targeted exploration of specific regions within the permutation space, useful for analyses such as midpoint
studies or recursive sampling. A digital copy is available at:
https://tropicalcoder.com/PermutationGeneratorIndexed.cpp

Appendix D: C++ Full Three-Column Generator

The following C++ program demonstrates compressed code generation, permutation reconstruction, and
validation. The output displays three columns: Compressed Code, Reconstructed Value, and Actual Per-
mutation (with leading zeros). A digital copy is available at:
https://tropicalcoder.com/fractal_permutation_generator.cpp

Appendix E: Permutation Table Reuse Demo

The followingC++ program generates compression codes from small-n sets and applies them to reconstruct
both first and last small-n! permutations of larger-n sets. A digital copy is available at:
https://tropicalcoder.com/FractalPermReconstructionDemo.cpp

The following Python program performs the same operation in Python: A digital copy is available at:
https://tropicalcoder.com/reverseCodes.py
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Appendix F: Observed Structural Regularities at Factorial Boundaries

This appendix reports recurring numerical patterns observed during real-time enumeration of permutations—
a phenomenon not yet fully characterized, but one that suggests deeper combinatorial structure and invites
further theoretical investigation.

Empirical Observation

In one experiment, we enumerated permutations of n = 20 in real time. To slow the output to a readable
speed, the program was configured to print every 10!th permutation. Surprisingly, many of the displayed
permutations ended in the digit 19—deviating from the anticipated rapid variation. The same trailing-digit
stability appearedwhen sampling every 8!th, 9!th, or 11!th permutation, suggesting the key lies in choosing
sampling of comparable factorial order. A representative sample is shown below, with each index followed
by its compressed code (in base-21, using digits 0—9 and letters A—K) and corresponding permutation.

Compressed Codes and Permutations Sampled at 10! Intervals (from n = 20)

Index Code Permutation
0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

3628800 1000000000 0 1 2 3 4 5 6 7 8 10 9 11 12 13 14 15 16 17 18 19
7257600 2100000000 0 1 2 3 4 5 6 7 8 11 9 10 12 13 14 15 16 17 18 19
10886400 3210000000 0 1 2 3 4 5 6 7 8 12 9 10 11 13 14 15 16 17 18 19
14515200 4321000000 0 1 2 3 4 5 6 7 8 13 9 10 11 12 14 15 16 17 18 19
18144000 5432100000 0 1 2 3 4 5 6 7 8 14 9 10 11 12 13 15 16 17 18 19
21772800 6543210000 0 1 2 3 4 5 6 7 8 15 9 10 11 12 13 14 16 17 18 19
25401600 7654321000 0 1 2 3 4 5 6 7 8 16 9 10 11 12 13 14 15 17 18 19
29030400 8765432100 0 1 2 3 4 5 6 7 8 17 9 10 11 12 13 14 15 16 18 19
32659200 9876543210 0 1 2 3 4 5 6 7 8 18 9 10 11 12 13 14 15 16 17 19
36288000 A987654321 0 1 2 3 4 5 6 7 8 19 9 10 11 12 13 14 15 16 17 18
39916800 10000000000 0 1 2 3 4 5 6 7 9 8 10 11 12 13 14 15 16 17 18 19
43545600 12000000000 0 1 2 3 4 5 6 7 9 10 8 11 12 13 14 15 16 17 18 19
47174400 13100000000 0 1 2 3 4 5 6 7 9 11 8 10 12 13 14 15 16 17 18 19
50803200 14210000000 0 1 2 3 4 5 6 7 9 12 8 10 11 13 14 15 16 17 18 19
54432000 15321000000 0 1 2 3 4 5 6 7 9 13 8 10 11 12 14 15 16 17 18 19
58060800 16432100000 0 1 2 3 4 5 6 7 9 14 8 10 11 12 13 15 16 17 18 19
61689600 17543210000 0 1 2 3 4 5 6 7 9 15 8 10 11 12 13 14 16 17 18 19
65318400 18654321000 0 1 2 3 4 5 6 7 9 16 8 10 11 12 13 14 15 17 18 19
68947200 19765432100 0 1 2 3 4 5 6 7 9 17 8 10 11 12 13 14 15 16 18 19
72576000 1A876543210 0 1 2 3 4 5 6 7 9 18 8 10 11 12 13 14 15 16 17 19
76204800 1B987654321 0 1 2 3 4 5 6 7 9 19 8 10 11 12 13 14 15 16 17 18

This result was initially puzzling. Since the last digit varies most rapidly in lexicographic order, a more
even distribution was expected. In hindsight, the observed stability zones—where the trailing digit remains
fixed—appear to reflect an underlying structural cause. These zones seem to arise from the hierarchical
structure of the factorial number system, which governs the evolution of lexicographically ordered per-
mutations. The recurring patterns at factorial strides suggest a form of long-range order in permutation
space.
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Interpretation in Permutation Space

We suggest these observations can be understood directly in terms of the grouping structure of permutation
space. In the factorial number system (FNS), each permutation’s lexicographic rank corresponds to a
factorial-based expansion. Sampling every m! steps for m ≪ n is equivalent to varying the n −m most
significant factorial digits, while the least significant digits remain temporarily stable until carries occur.

This mirrors how coarse strides in base-10 fix trailing digits in decimal numbers. The reoccurrence of
trailing digits across many samples arises from the hierarchical traversal inherent in the factorial number
system. Viewed through this lens, what initially appeared as surprising numerical behavior becomes a
predictable artifact of recursive enumeration.

The observed reoccurrence of trailing digits is not an isolated anomaly, but reflects deeper structural
regularities in permutation space. Lexicographic order maps directly to numeric value in the FNS, making
such repetition an inherent outcome of its recursive encoding. Each stride of size 10! for n = 20 lands in a
new factorial block, where the lower-order digits of the permutation (the suffix) tend to remain unchanged
over consecutive samples. This arises because the lex-order tree is recursively partitioned: n! permutations
are divided into n blocks of (n − 1)!, then into (n − 2)!, and so on. Sampling at factorial intervals
traverses this hierarchy at coarse resolution, creating localized regularities in the trailing digits—both in
the permutations and their compressed representations.

Hierarchical Stability in Compressed Codes

Compressed codes reflect lexicographic rank directly. When expressed in a higher base such as 21, they
reveal a denser lattice of anchor points, enhancing the visibility of structural transitions aligned with
factorial boundaries. (Base-21 allows division by r−1 = 20, yielding an integer aligned with rank.)

When the same permutation samples are examined through their compressed codes in base-21, a second
pattern emerges. The codes display numerical anchors of the form 100...0, 210...0, 3210...0, and
so on—each aligned precisely with a factorial boundary. These values correspond to base-21 prefixes
multiplied by descending powers of the base, e.g., 1 · 2111, (2 · 21 + 1) · 2110, (3 · 212 + 2 · 21 + 1) · 219,
etc. The samples were taken at multiples of 10! starting from 132 × 10!, a point where the digit width of
the codes has expanded.

Index Compressed Code (base-21) Expression as Power of 21
479001600 100000000000 1 · 2111

958003200 210000000000 43 · 2110

1437004800 321000000000 1366 · 219

1916006400 432100000000 35903 · 218

2395008000 543210000000 752388 · 217

2874009600 654321000000 12038259 · 216

3353011200 765432100000 144459084 · 215

3832012800 876543210000 1284995385 · 214

4311014400 987654321000 8355849446 · 213

4790016000 A98765432100 39754765487 · 212

5269017600 BA9876543210 132515173979 · 21
5748019200 CBA987654321 N/A

6227020800 1000000000000 1 · 2112

20



Conjecture: Stability of Suffixes at Factorial Intervals

Suffix stability emerges when sampling permutation space at factorial intervals, reflecting the hierarchical
structure of lexicographic ordering.

For large n, such sampling induces coherence in the final digits of both the permutation and its com-
pressed code. We posit that this stability might enable algorithmic advantages in prediction, sampling,
and structure-aware hashing, by exploiting coarse-grained regularities across large permutation sets.

Perspective and Future Work.

The observed regularity appears to reflect a combinatorial invariant rooted in recursive structure. The
coherence across factorial intervals likely stems from the internal nesting of permutation cosets, where
each level progressively fixes more digits and restricts local variation.

Quantitative analysis could clarify this effect—for instance, by measuring digit variance across fixed facto-
rial strides—to assess the degree and persistence of suffix stability. Such work may reveal how hierarchical
traversal interacts with structural regularities in permutation space.

Further investigation could explore whether analogous stability patterns arise under alternate orderings
(e.g., colex), or in nonuniform encodings. These phenomenamay have algorithmic applications in structure-
aware sampling, predictive indexing, or compression, and could invite formal treatment via algebraic
combinatorics or spectral analysis of permutation graphs.

Appendix G: Recursive Call Structure

The algorithm introduced here explores a recursive tree of choices, making exactly n! terminal calls—one
at each leaf node—implicitly computing the factorial through structural descent.

0

01

012

02

021

1

10

102

12

120

2

20

201

21

210

Figure 1: Recursive permutation tree for {0, 1, 2}. Each path from root to leaf corresponds to one
permutation.
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Listing 1: Permutation Generator
import itertools
MAX_N = 20
n = 20 # <-- Set n here
PRINT_INTERVAL = 1000000 # <-- Print every million permutations
global_index = 0

reference_perms = itertools.permutations(range(n))

def print_perm(perm, end=''):
for num in perm:

print(f"{num:2d} ", end='')
print(end, end='')

def emit(prefix):
global global_index

ref = next(reference_perms)
global_index += 1

if global_index % PRINT_INTERVAL == 0:
print(f"{global_index:12d} ", end='')
print_perm(prefix, end=' ')
print_perm(ref)
print()

# Recursive permutation generator
def generate_permutations(sorted_digits , prefix):

if not sorted_digits:
emit(prefix)
return

for i, first in enumerate(sorted_digits):
remaining = sorted_digits[:i] + sorted_digits[i+1:]
generate_permutations(remaining , prefix + [first])

# Entry point
def main():

digits = list(range(n))
digits.sort() # Initial sort
generate_permutations(digits, [])

if __name__ == "__main__":
try:

main()
except KeyboardInterrupt:

print("Any key exits.")
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Listing 2: Compressed Code Generator
def digits_to_int(digits):

result = 0
for d in digits:

result = result * 10 + d
return result

def generate_compressed(digits):
if len(digits) == 1:

return [0]

sorted_digits = sorted(digits)
base_value = digits_to_int(sorted_digits)
result = []

for i, first in enumerate(sorted_digits):
remaining = sorted_digits[:i] + sorted_digits[i+1:]
remain_base = digits_to_int(remaining)
power_term = 10 ** (len(digits) - 1)
offset = (first * power_term + remain_base - base_value) // 9

sub_result = generate_compressed(remaining)
for val in sub_result:

result.append(offset + val)

return result

def reconstruct_permutation(code, base):
return code * 9 + base

if __name__ == "__main__":
digits = [0, 1, 2, 3, 4, 5]
base = digits_to_int(digits)
compressed = generate_compressed(digits)

for code in compressed:
reconstructed = reconstruct_permutation(code, base)

print(f"Code: {code}, Reconstructed: {str(reconstructed).zfill(
len(digits))}")
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